Skip to main content

BISECTION METHOD (BOLZANO METHOD) / what is BISECTION METHOD (BOLZANO METHOD)

 

Explain BISECTION METHOD (BOLZANO METHOD).  Engineering maths

The method is applicable for numerically solving the equation f(x) = 0 for the real variable x, where f is a continuous function defined on an interval [ab] and where f(a) and f(b) have opposite signs. In this case a and b are said to bracket a root since, by the intermediate value theorem, the continuous function f must have at least one root in the interval (ab).



At each step the method divides the interval in two by computing the midpoint c = (a+b) / 2 of the interval and the value of the function f(c) at that point. Unless c is itself a root (which is very unlikely, but possible) there are now only two possibilities: either f(a) and f(c) have opposite signs and bracket a root, or f(c) and f(b) have opposite signs and bracket a root.[5] The method selects the subinterval that is guaranteed to be a bracket as the new interval to be used in the next step. In this way an interval that contains a zero of f is reduced in width by 50% at each step. The process is continued until the interval is sufficiently small.

Explicitly, if f(a) and f(c) have opposite signs, then the method sets c as the new value for b, and if f(b) and f(c) have opposite signs then the method sets c as the new a. (If f(c)=0 then c may be taken as the solution and the process stops.) In both cases, the new f(a) and f(b) have opposite signs, so the method is applicable to this smaller interval.[6]

Iteration tasksEdit

The input for the method is a continuous function f, an interval [ab], and the function values f(a) and f(b). The function values are of opposite sign (there is at least one zero crossing within the interval). Each iteration performs these steps:

  1. Calculate c, the midpoint of the interval, c = b/2.
  2. Calculate the function value at the midpoint, f(c).
  3. If convergence is satisfactory (that is, c - a is sufficiently small, or |f(c)| is sufficiently small), return c and stop iterating.
  4. Examine the sign of f(c) and replace either (af(a)) or (bf(b)) with (cf(c)) so that there is a zero crossing within the new interval.

When implementing the method on a computer, there can be problems with finite precision, so there are often additional convergence tests or limits to the number of iterations. Although f is continuous, finite precision may preclude a function value ever being zero. For example, consider f(x) = x − π; there will never be a finite representation of x that gives zero. Additionally, the difference between a and b is limited by the floating point precision; i.e., as the difference between a and b decreases, at some point the midpoint of [ab] will be numerically identical to (within floating point precision of) either a or b..

AlgorithmEdit

The method may be written in pseudocode as follows:[7]

INPUT: Function f, 
       endpoint values a, b, 
       tolerance TOL, 
       maximum iterations NMAX
CONDITIONS: a < b, 
            either f(a) < 0 and f(b) > 0 or f(a) > 0 and f(b) < 0
OUTPUT: value which differs from a root of f(x) = 0 by less than TOL
 
N ← 1
while NNMAX do // limit iterations to prevent infinite loop
    c ← (a + b)/2 // new midpoint
    if f(c) = 0 or (ba)/2 < TOL then // solution found
        Output(c)
        Stop
    end if
    NN + 1 // increment step counter
    if sign(f(c)) = sign(f(a)) then ac else bc // new interval
end while
Output("Method failed.") // max number of steps exceeded

Comments

Popular posts from this blog

What is two transistor model of scr ? Explain SCR

  Power electronics Two Transistor Model of SCR full explain and pdf. Basic operating principle of SCR, can easily be understood by the two transistor model of SCR , as it is a combination of p and n layers. This is a pnpn thyristor. If we bisect it through the dotted line then we will get two transistors i.e. one pnp transistor with J 1 and J 2 junctions and another is with J 2 and J 3 junctions as shown in figure below. The relation between the collector current and emitter current is shown below Here, I C is collector current, I E is emitter current, I CBO is forward leakage current, α is common base forward current gain and relationship between I C and I B is Where, I B is base current and β is common emitter forward current gain. Let’s for transistor T 1 this relation holds And that for transistor T 2 Now, by the analysis of two transistors model we can get anode current, From equation (i) and (ii), we get, If applied gate current is I g then cathode current will b...

If K is the transformation ratio, then the secondary phase voltage of delta-delta connected three phase transformer will be

  Delta-Delta Connection in Three Phase Transformers - MCQs with Answers Q1. If K is the transformation ratio, then the secondary phase voltage of delta-delta connected three phase transformer will be. a. 1 / K times of the primary phase voltage b. Equal to the primary phase voltage c. 1 / K ∧ 2 times of the primary phase voltage d. K times the primary phase voltage ANSWER: d. K times the primary phase voltage