Skip to main content

If K is the transformation ratio, then the secondary phase voltage of delta-delta connected three phase transformer will be

 

Delta-Delta Connection in Three Phase Transformers - MCQs with Answers


Q1. If K is the transformation ratio, then the secondary phase voltage of delta-delta connected three phase transformer will be.


a. 1 / K times of the primary phase voltage
b. Equal to the primary phase voltage
c. 1 / K ∧ 2 times of the primary phase voltage
d. K times the primary phase voltage


ANSWER: d. K times the primary phase voltage

Comments

Popular posts from this blog

What is two transistor model of scr ? Explain SCR

  Power electronics Two Transistor Model of SCR full explain and pdf. Basic operating principle of SCR, can easily be understood by the two transistor model of SCR , as it is a combination of p and n layers. This is a pnpn thyristor. If we bisect it through the dotted line then we will get two transistors i.e. one pnp transistor with J 1 and J 2 junctions and another is with J 2 and J 3 junctions as shown in figure below. The relation between the collector current and emitter current is shown below Here, I C is collector current, I E is emitter current, I CBO is forward leakage current, α is common base forward current gain and relationship between I C and I B is Where, I B is base current and β is common emitter forward current gain. Let’s for transistor T 1 this relation holds And that for transistor T 2 Now, by the analysis of two transistors model we can get anode current, From equation (i) and (ii), we get, If applied gate current is I g then cathode current will b...

BISECTION METHOD (BOLZANO METHOD) / what is BISECTION METHOD (BOLZANO METHOD)

  Explain BISECTION METHOD (BOLZANO METHOD).  Engineering maths The method is applicable for numerically solving the equation  f ( x ) = 0 for the  real  variable  x , where  f  is a  continuous function  defined on an interval [ a ,  b ] and where  f ( a ) and  f ( b ) have opposite signs. In this case  a  and  b  are said to bracket a root since, by the  intermediate value theorem , the continuous function  f  must have at least one root in the interval ( a ,  b ). At each step the method divides the interval in two by computing the midpoint  c  = ( a + b ) / 2 of the interval and the value of the function  f ( c ) at that point. Unless  c  is itself a root (which is very unlikely, but possible) there are now only two possibilities: either  f ( a ) and  f ( c ) have opposite signs and bracket a root, or  f ( c ) and  f ( b...